欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (05): 228-236.

• “矿业青年科学家”专题 • 上一篇    下一篇

融合 Swin Transformer 与 CNN 的露天矿车前障碍物智能检测算法

江 松1,2,3,4 孔若男1,4 李鹏程5 卢才武1,4 章 赛1,4 李 萌6
  

  1. 1. 西安建筑科技大学资源工程学院,陕西 西安 710055;2. 中钢集团马鞍山矿山研究总院股份有限公司,安徽 马鞍山 243000;3. 金属矿山安全与健康国家重点实验室,安徽 马鞍山 243000;4. 西安市智慧工业感知计算与决策重点实验室,陕西 西安 710055;5. 冀东水泥铜川有限公司,陕西 铜川 727100;6. 西安建筑科技大学管理学院,陕西 西安 710055
  • 出版日期:2023-05-15 发布日期:2023-06-15
  • 基金资助:
    国家自然科学基金项目( 编号: 52104146);陕西省自然科学基金项目( 编号: 2021JQ-509);中国博士后科学基金项目( 编号:2022M722925);陕西省社会科学基金项目(编号:2020R005)。

Intelligent Detection Algorithm of Obstacles in Front of Open-pit Mine Cars Based on Swin Transformer and CNN

JIANG Song1,2,3,4 KONG Ruonan1,4 LI Pengcheng5 LU Caiwu1,4 ZHANG Sai1,4 LI Meng6 #br#   

  1. 1. School of Resource Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China;2. Sinosteel Maanshan General Institute of Mining Research Co. ,Ltd. ,Maanshan 243000,China;3. State Key Laboratory of Safety and Health for Metal Mines,Maanshan 243000,China;4. Xi′an Key Laboratory for Intelligent Industrial Perception,Calculation and Decision,Xi′an 710055,China;5. Jidong Cement Tongchuan Co. ,Ltd. ,Tongchuan 727100,China;6. School of Management,Xi′an University of Architecture and Technology,Xi′an 710055,China
  • Online:2023-05-15 Published:2023-06-15

摘要: 随着金属露天矿开采深度不断加大,道路运输条件愈发复杂,无人矿车行驶在道路上面临着各种障碍 物的安全隐患,因此对无人矿卡障碍物智能检测提出了更高要求。 提出了一种融合 Swin Transformer 与 CNN 的露天 矿车前障碍物智能检测方法,障碍物检测模型需要建立长期依赖关系来处理不断增加的图像数据,Swin Transformer 可以关注全局语义信息,有利于长期建模。 将 Swin Transformer 融入 YOLOX 模型的骨干特征提取网络中,充分利用多 头注意力机制,对图像特征进行预处理,在加强特征提取网络中加入 CBAM 注意力机制模块,使模型在后续的特征提 取中能够提取更多的表征信息。 该模型使用的数据集均来自实地矿山,并采用数据增强方式进行预处理。 经过实地 矿山数据对比验证试验,结果表明:该方法能够有效识别背景复杂的金属露天矿区非结构化道路障碍物,检测精度达 到 91. 57%mAP,检测速度达到 56. 86 fps,具有较好的小目标和多尺度目标检测性能,可以满足无人矿卡在金属露天矿 区的高精度检测要求。

关键词: 金属露天矿, 无人矿卡, YOLOX, 卷积神经网络, Swin Transformer, 障碍物检测

Abstract: With the deepening of metal open-pit mining,the road transportation conditions become more and more complex,and unmanned mining cards driving on the road faces the safety hazards of various obstacles,so the intelligent detection of obstacles for unmanned mine cards has put forward higher requirements. In this paper,a fusion of Swin Transformer and Convolutional Neural Network (CNN) for the intelligent detection of obstacles in front of open-pit mining trucks is proposed. The obstacle detection model needs to establish long-term dependencies to deal with increasing image data,and Swin Transformer can focus on global semantic information,which is beneficial to long-term modeling. The Swin Transformer is incorporated into the backbone feature extraction network of the YOLOX model to make full use of the multi-headed attention mechanism to preprocess image features,and the CBAM attention mechanism module is added to the enhanced feature extraction network to enable the model to extract more representational information in the subsequent feature extraction. The datasets used in the model are all from field mines and are pre-processed using data enhancement. After field mine data comparison and validation experiments,the results show that:the method can effectively identify unstructured road obstacles in metal open-pit mine with a complex background,and the detection accuracy reaches 91. 57% mAP,the detection speed reaches 56. 86 fps,with better small target and multi-scale target detection performance,which can meet the unmanned mine card in metal open pit with high accuracy detection requirements.

Key words: metal open-pit mine,unmanned mining cards,YOLOX,convolutional neural network,Swin Transformer,obstacle detection