欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (6): 221-229.

• 安全与环保 • 上一篇    下一篇

基于 K-Means 和 IE 模型的采空区地表安全性 评价指标研究

赵  博1,2   俞  奎1    

  1. 1. 太原理工大学土木工程学院,山西 太原 030024;2. 土木工程防灾与控制山西省重点实验室,山西 太原 030024
  • 出版日期:2025-06-15 发布日期:2025-07-09
  • 作者简介:赵  博(1986—),男,讲师,博士。
  • 基金资助:
    山西省基础研究基金项目(编号:201901D211007);山西省回国留学人员科研教研资助项目(编号:2023-084)。 

Study on Surface Safety Evaluation Index of Goaf Based on K-Means and IE Model 

ZHAO Bo 1,2   YU Kui 1    

  1. 1. College of Civil Engineering,Taiyuan University of Technology,Taiyuan 030024,China; 2. Shanxi Key Laboratory of Civil Engineering Disaster Prevention and Control,Taiyuan 030024,China
  • Online:2025-06-15 Published:2025-07-09

摘要: 随着智能算法在灾害评价领域的深入应用,构建合理的评价指标体系对于实现复杂采空区地表安全性 的高效评价至关重要。 然而,传统指标选取方法存在主观性强、干扰因素多、效率低及数字化程度不足等诸多瓶颈。 为此,构建了一种基于 K-Means 聚类算法和 IE 理论的高效精确评价指标模型。 该模型首先从采空区地表灾害作用机 理出发,广泛筛选潜在评价指标;进而利用 K-Means 算法对这些指标进行聚类筛选,以降低指标信息表达的冗余性和 复杂度;通过 IE 理论计算提炼出对安全性影响显著的关键指标,构建出一套采空区复杂场地安全性评价的指标体系。 为验证指标体系的合理性,结合 PCA 和熵权法进行检验评估;将模型应用于某采空区地区,并与常用方法的评价结果 进行对比。 结果表明:该模型成功将 38 个初选指标精简至 8 个关键指标,所构建的评价指标体系仅用 21. 1%的指标 特征便能表征 87. 9%的原始指标信息,显著降低了计算工作量,提升了评价效率。 该研究成果不仅为采空区地表稳 定性评价提供了一种新颖方法,而且为相关领域的研究提供了理论支撑,具有较高的理论价值和实践意义。 

关键词: 采空区, 评价指标, 聚类算法, 信息熵 

Abstract: With the in-depth application of intelligent algorithms in the field of disaster evaluation,it is very important to construct a reasonable evaluation index system for the efficient evaluation of surface safety in complex goafs. However,the traditional index selection method has many bottlenecks,such as strong subjectivity,many interference factors,low efficiency and insufficient digitization. Therefore,an efficient and accurate evaluation index model based on K-Means clustering algorithm and IE theory is constructed. Firstly,the model starts from the mechanism of surface disasters in goaf and extensively screens potential evaluation indicators. Then,the K-Means algorithm is used to cluster and filter these indicators to reduce the redundancy and complexity of the indicator information expression. Through IE theoretical calculation,the key indicators that have a significant impact on safety are extracted,and a set of index system for safety evaluation of complex sites in goaf is constructed. In order to verify the rationality of the index system,PCA and entropy weight method are used to test and evaluate. The model is applied to a goaf area and compared with the evaluation results of common methods. The results show that the model successfully simplifies 38 primary indicators to 8 key indicators,and the constructed evaluation index system can represent 87. 9% of the original index information with only 21. 1% of the index characteristics,which significantly reduces the calculation workload and improves the evaluation efficiency. The research results not only provide a new method for the evaluation of surface stability in goaf,but also provide theoretical support for the research in related fields,which has high theoretical value and practical significance. 

Key words: goaf areas,evaluation indicators,clustering algorithms,information entropy 

中图分类号: