欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (7): 146-154.

• 机电与自动化 • 上一篇    下一篇

基于 HSV 空间融合与 Retinex 算法的矿井图像增强算法

朱  磊1   曾铜炳2   梁雄乾3    

  1. 1. 广西警察学院信息技术学院,广西 南宁 530028;2. 广西壮族自治区环境信息中心,广西 南宁 530000; 3. 广西壮族自治区自然资源调查监测院,广西 南宁 530019
  • 出版日期:2025-07-15 发布日期:2025-08-12
  • 通讯作者: 曾铜炳(1975—),男,高级工程师。
  • 作者简介:朱  磊(1988—),男,高级工程师,硕士。
  • 基金资助:
    2025 年度广西重点研发计划项目(编号:桂科 AB25069263)

Mine Image Enhancement Algorithm Based on HSV Spatial Fusion with Retinex Algorithm

ZHU Lei 1   ZENG Tongbing 2   LIANG Xiongqian 3    

  1. 1. School of Information Technology,Guangxi Police College,Nanning 530028,China; 2. Guangxi Zhuang Autonomous Region Environmental Information Center,Nanning 530000,China; 3. Guangxi Institute of Natural Resources Survey and Monitoring,Nanning 530019,China
  • Online:2025-07-15 Published:2025-08-12

摘要: 随着智能矿井建设不断推进,图像在矿山安全监测、设备识别与作业辅助中发挥着重要作用。 然而,矿 井图像常面临低照度、光照不均、噪声干扰等复杂环境问题,导致图像细节模糊、亮度失衡,严重影响后续图像识别与 智能分析的准确性。 为解决上述问题,提出了一种融合多尺度增强机制与色调、饱和度和亮度色彩空间的矿井图像 增强算法。 该算法以 Retinex 理论构建的深度增强网络为基础,首先将矿井图像分解为光照与反射 2 个成分。 针对光 照成分,设计多尺度卷积网络提取不同空间尺度下的亮度信息,增强全局光照建模能力;针对反射成分,引入双边滤 波机制进行噪声抑制与边缘结构保留。 然后,分别将优化后的光照与反射成分通过融合重构形成初步增强图像。 最 后,在 HSV 色彩空间中分离初步增强图像的亮度通道,引入曝光调整与细节增强模块,进一步实现亮度补偿与纹理还 原的联合优化。 试验结果表明,所提方法在 DIV2K 公开数据集中的峰值信噪比高达 28. 9 dB,结构相似性指数达到 0. 87。 在自制的矿井图像数据集上,该算法的特征相似度指数最高提升至 0. 902,通用图像质量指数最高达 0. 847。 在不同光照条件下,该方法均表现出良好的细节恢复与亮度均衡能力,验证了其在矿井图像增强中的有效性。

关键词: 图像增强  HSV  深度学习  Retinex  多尺度特征  Retinex-Net

Abstract: With the continuous advancement of intelligent mine construction,images play a crucial role in mine safety monitoring,equipment identification,and operation assistance. However,mine images often encounter complex environmental issues such as low illumination,uneven lighting,and noise interference,leading to blurred details and imbalanced brightness, which seriously affect the accuracy of subsequent image recognition and intelligent analysis. To address these problems,a mine image enhancement algorithm that integrates a multi-scale enhancement mechanism with the hue,saturation,and value (HSV) color space is proposed. This method is based on a deep enhancement network constructed by the Retinex theory. Firstly,the mine image is decomposed into two components:illumination and reflection. For the illumination component,a multi-scale convolutional network is designed to extract brightness information at different spatial scales,enhancing the global illumination modeling capability. For the reflection component,a bilateral filtering mechanism is introduced to suppress noise and preserve edge structures. Subsequently,the optimized illumination and reflection components are fused and reconstructed to form a preliminary enhanced image. Finally,in the HSV color space,the brightness channel of the preliminary enhanced image is separated,and an exposure adjustment and detail enhancement module is introduced to further achieve joint optimization of brightness compensation and texture restoration. Experimental results show that the proposed method achieves a peak signal-to-noise ratio of up to 28. 9 dB and a structural similarity index of up to 0. 87 on the public DIV2K dataset. On the self-made mine image dataset,the feature similarity index of the algorithm is increased to a maximum of 0. 902,and the universal image quality index reaches a maximum of 0. 847. Under different lighting conditions,this method demonstrates excellent detail recovery and brightness balancing capabilities,verifying its effectiveness in mine image enhancement. 

Key words: image enhancement,HSV,deep learning,Retinex,multi-scale features,Retinex-Net 

中图分类号: