欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (7): 155-159.

• 机电与自动化 • 上一篇    下一篇

基于生成对抗网络的小目标图像超分辨算法研究

孙飞扬   

  1. 中国船舶集团第 724 研究所,江苏 南京 211106
  • 出版日期:2025-07-15 发布日期:2025-08-12
  • 作者简介:孙飞扬(1998—),男,助理工程师。

Study on Super-resolution Algorithm for Small Target Images Based on Generative Adversarial Network

SUN Feiyang    

  1. 724 Research Institute,China State Shipbuilding Corporation Limited,Nanjing,211106,China
  • Online:2025-07-15 Published:2025-08-12

摘要: 随着经济社会飞速发展,对于信息传播速度和传播质量提出了更高要求。 在计算机视觉领域,超分辨 率重构算法也使人们能够更加便捷地获取高分辨率图像。 然而,目前大多数方法都专注于提升图像的整体质量,针 对图像中包含的具体目标,尤其是小尺寸目标的处理结果都不是很理想。 提出了一种新的生成对抗网络(Generative Adversarial Network,GAN)模型(A-ESRGAN)。 该模型使用 real-ESRGAN 作为基础网络框架,引入 Vision Transformer 增强自注意力机制并替换激活函数。 通过设计针对性的数据集对该算法进行目标检测消融试验,验证该算法的可行 性。 研究表明:该模型在面对含有小目标的图像时可以生成质量更高的图像,同时在主流的超分辨重构效果指标上 优于原始模型。 

关键词: 超分辨率重构  生成对抗网络  自注意力机制 

Abstract: With the rapid development of economy and society,higher requirements are put forward for the speed and quality of information dissemination. In the field of computer vision,super-resolution reconstruction also make it easier for people to obtain high-resolution images. However,most current methods focus on improving the overall quality of images,and the processing results for specific targets contained in the image,especially small-sized objects,are not very satisfactory. This paper proposes new generative adversarial network,which uses real-ESRGAN as the baseline network framework,introduces Vision Transformer to enhance the self-attention mechanism and replaces the activation function. The feasibility of the algorithm is verified by designing a target detection ablation test on the algorithm for the targeted-designed dataset. The study results show that the model can generate higher quality images when facing images containing small objects,and it is superior to the original model in terms of mainstream super-resolution reconstruction effect indicators. 

Key words: super-resolution reconstruction,generative adversarial network,self-attention 

中图分类号: