欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 55 ›› Issue (8): 244-252.

• 地质与测量 • 上一篇    下一篇

基于机载 LiDAR 的山区沉陷监测与预计一体化方法

徐大永1,2,3   王  磊1,2,3   魏  涛1,2,3   池深深1,2,3   陈元非1,2,3    

  1. 1. 安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001;2. 矿山采动灾害空天地协同监测与预警安徽普通高校 重点实验室,安徽 淮南 232001;3. 矿区环境与灾害协同监测煤炭行业工程研究中心,安徽 淮南 232001
  • 出版日期:2025-09-15 发布日期:2025-09-16
  • 通讯作者: 王  磊(1984—),男,教授,博士(后),博士研究生导师。
  • 作者简介:徐大永(2000—),男,硕士研究生。
  • 基金资助:
    国家自然科学基金项目(编号:52074010,52474194 );安徽省优秀青年科学基金项目(编号:108085Y20)。 

Integrated Method for Subsidence Monitoring and Prediction in Mountain Area Based on Airborne LiDAR 

XU Dayong 1,2,3   WANG Lei 1,2,3   WEI Tao 1,2,3   CHI Shenshen 1,2,3   CHEN Yuanfei 1,2,3    

  1. 1. School of Spatial Informatics and Geomatics Engineering,Anhui University of Science and Technology,Huainan 232001,China; 2. Key Laboratory of Aviation-aerospace-ground Cooperative Monitoring and Early Warning of Coal Mining-induced Disasters of Anhui Higher Education Institutes,Huainan 232001,China;3. Coal Industry Engineering Research Center of Mining Area Environmental and Disaster Cooperative Monitoring,Huainan 232001,China
  • Online:2025-09-15 Published:2025-09-16

摘要: 准确监测和预计山区煤炭开采引起的地表移动变形,是预防山区建(构)筑物损害、山体滑坡、塌方等灾 害的重要手段。 针对现有山区开采沉陷难以实现监测与预计一体化处理,导致监测效率低、监测结果难以实现高效 率预计的问题,结合机载 LiDAR 回波特性,将格网法、C2C 算法与移动窗口遍历法进行有机集成,提出了基于机载 LiDAR 的山区沉陷监测与预计一体化方法。 该方法包括监测和预计 2 个部分,实现了集数据采集、点云提取、参数计算 于一体的流程化操作。 以典型山区地形的山西某矿区为例探讨了所提方法的可行性,研究结果表明:该方法能够实 现地表高精度监测;与水准实测数据对比,累计中误差不超过 40 mm,总体误差优于 5%;同时针对山区开采沉陷预计 模型所需的大量地表特性参数可实现快速计算,对山区沉陷监测与预计具有较好的参考意义。 

关键词: 开采沉陷  山区沉陷监测与预计  机载 LiDAR  回波特性  地表特性参数

Abstract: Accurately monitoring and predicting the surface movement and deformation caused by coal mining in mountainous areas is an important means to prevent damage to buildings a nd structures,landslides,and collapses in mountainous areas. In response to the existing difficulty in achieving integrated detection and prediction for subsidence in mountainous mining areas,which leads to low monitoring efficiency and the inability to achieve efficient prediction of monitoring results,this paper organically integrates the grid method,C2C algorithm,and moving window traversal method based on the echo characteristics of airborne LiDAR,and proposes an integrated method for subsidence monitoring and prediction in mountainous areas based on airborne LiDAR. This method consists of two parts:monitoring and prediction,and realizes a process-oriented operation integrating data collection,point cloud extraction,and parameter calculation. Taking a typical mountainous terrain in a certain mining area in Shanxi as an example,the feasibility of this method is explored. The study results show that this algorithm can achieve high-precision surface monitoring. Compared with the actual measurement data of leveling,the cumulative mean error does not exceed 40 mm,and the overall error is better than 5%. At the same time,it can quickly calculate a large number of surface characteristic parameters required for the subsidence prediction model in mountainous mining areas,which has a good reference significance for subsidence monitoring and prediction in mountainous areas.

Key words: mining subsidence,subsidence monitoring and prediction in mountain area,airborne LiDAR,echo characteristics,surface characteristic parameters 

中图分类号: