欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (12): 150-158.

• 矿山爆破 • 上一篇    下一篇

基于改进GS-SVR的爆破振速及主频预测研究

张光权1,2 黄灿灿1 王梦佳1 章 昊1 温增睿1   

  1. 1.武汉科技大学资源与环境工程学院,湖北 武汉 430081;2.湖北省工业安全工程技术研究中心,湖北 武汉 430081
  • 出版日期:2025-12-15 发布日期:2025-12-31
  • 作者简介:张光权(1981—),男,副教授,博士。
  • 基金资助:
    国家自然科学基金项目(编号:U1802243)。

Research on Prediction of Blasting Vibration Velocity and Main Frequency Based on Improved GS-SVR

ZHANG Guangquan1,2 HUANG Cancan1 WANG Mengjia1 ZHANG Hao1 WEN Zengrui1   

  1. 1.Department of Resource and Environmental Engineering,Wuhan University of Science and Technology,Wuhan 430081,China; 2.Hubei Industrial Safety Engineering Technology Research Center,Wuhan 430081,China
  • Online:2025-12-15 Published:2025-12-31

摘要: 爆破振动会对周围居民及建(构)筑物产生危害,然而爆破振动预测技术存在过程复杂、易早熟收敛等 问题。为了提高预测效率及精度,提出改进GS-SVR预测模型。通过改变网格搜索算法的搜索步长(改进GS),优化 支持向量机参数,将最优核函数参数gamma和最优惩罚参数c组合应用于支持向量回归模型(SVR)。以某露天矿监 测数据为基础,采用随机森林法处理原始数据,筛选出爆心距、单次爆破总药量、孔距米延时、排距米延时4项参数作 为模型的输入参数,利用该模型对爆破振动合成峰值速度和主振频率进行了预测。结果表明,改进GS-SVR模型的收 敛速度为10 s,精度可达99%,对比SVR、GA-SVR、PSO-SVR和Tabnet模型预测结果,训练效率和预测精度明显改善, 说明改进GS-SVR模型具有更好的泛化能力。研究提出的爆破振动速度和主频的预测模型为类似爆破工程提供了有 效的预测方法。

关键词: 爆破振动 改进网格搜索 支持向量回归 爆破振速 爆破主频

Abstract: Blasting vibration will cause harm to surrounding residents and buildings (structures).However,blasting vi bration prediction technology has problems such as complex process and premature convergence.In order to improve the predic tion efficiency and accuracy,an improved GS-SVR prediction model is proposed.By changing the search step size of the grid search algorithm (improved GS),the support vector machine parameters are optimized,and the combination of the optimal ker nel function parameter gamma and the optimal penalty parameter c is applied to the support vector regression model (SVR). Based on the monitoring data of an open-pit mine,the random forest method was used to process the original data,and four pa rameters were selected as the input parameters of the model,including the distance between the explosion center,the total a mount of single blasting,the delay time of the hole distance meter and the delay time of the row distance meter.The model was used to predict the peak velocity and the main vibration frequency of the blasting vibration.The results show that the conver gence speed of the improved GS-SVR model is 10 s,and the accuracy can reach 99%.Compared with the prediction results of SVR,GA-SVR,PSO-SVR and Tabnet models,the training efficiency and prediction accuracy are significantly improved,indica ting that the improved GS-SVR model has better generalization ability.The prediction model of blasting vibration velocity and dominant frequency proposed in this study provides a effective prediction method for similar blasting projects.

Key words: blast vibration,improved grid search,SVR,blast velocity,vibration frequency

中图分类号: