欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (12): 259-264.

• 地质与测量 • 上一篇    下一篇

一种多尺度特征语义关联的矿区多源遥感图像融合方法

师 艳1 李海军1 剧成宇2 吴志露3   

  1. 1.河南地矿职业学院测绘工程学院,河南 郑州 450007;2.中国电建集团河南省电力勘测设计院有限公司,河南 郑州 450007; 3.同济大学测绘与地理信息学院,上海 200000
  • 出版日期:2025-12-15 发布日期:2025-12-31
  • 通讯作者: 吴志露(1990—),男,副教授,博士。
  • 作者简介:师 艳(1986—),女,讲师,硕士。
  • 基金资助:
    “十四五”国家重点研发计划 “地球观测与导航” 重点专项(编号:2023YFB3907201);国家自然科学基金青年科学基金项目(编号: 42204018);河南省高等学校重点科研项目(编号:25B420013);河南省哲学社会科学教育强省研究项目(编号:2025JYQS1065)。

A Multi-Scale Feature Semantic Association Method for Multi-source Remote Sensing Image Fusion in Mining Area

SHI Yan1 LI Haijun1 JU Chengyu2 WU Zhilu3   

  1. 1.School of Geomatics Engineering,Henan Geology Mineral College,Zhengzhou 450007,China; 2.Power China Henan Electric Power Survey & Design Institute Corporation Limited,Zhengzhou 450007,China; 3.College of Surveying and Geo-Informatics,Tongji University,Shanghai 200000,China
  • Online:2025-12-15 Published:2025-12-31

摘要: 随着遥感技术的迅猛发展,获取矿区多源遥感图像已成为资源监测与评估的重要手段。然而,不同来 源的遥感图像在空间分辨率、光谱特征和获取时间等方面存在显著差异,如何有效融合这些数据以提高矿区特征提 取的精度是当前研究难点。为此,提出了一种多尺度特征语义关联的矿区多源遥感图像融合方法。该方法首先通过 多尺度特征提取技术,利用图像金字塔和卷积神经网络,从遥感图像中提取不同尺度的空间—光谱特征。随后,采用 改进的图卷积神经网络(Graph Convolutional Neural Network,GCNN)处理这些多尺度特征,通过引入特征传播机制和 自适应权重调整策略,增强了网络对局部结构和全局信息的学习能力。最后,利用语义关联分析将地质背景知识与 多尺度物理特征进行融合,通过余弦相似度度量特征间关系并动态调整权重,实现了物理特征与语义信息的有效整 合。试验结果表明:所提方法峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)达到35.2 dB,波谱角误差(Spectral Angle Error,SAE)降低至0.015,均方根误差(Root Mean Square Error,RMSE)为0.012,以及结构相似性指数(Structural Simi larity Index,SSIM)达到0.89,有效提高了高光谱数据的空间分辨率,同时保持了良好的波谱特性。该方法为矿区遥感 监测提供了一种新思路,具有一定的实际应用价值。

关键词: 多源遥感图像 特征提取 语义关联 图像融合 图卷积神经网络

Abstract: With the rapid development of remote sensing technology,obtaining multi-source remote sensing image of min ing areas has become an important means for resource monitoring and assessment.However,remote sensing image from different sources have significant differences in spatial resolution,spectral characteristics,and acquisition time.How to effectively in tegrate these data to improve the accuracy of feature extraction in mining areas is currently a research difficulty.To this end,a multi-source remote sensing image fusion method based on multi-scale feature semantic association is proposed.This method first extracts multi-scale spatial-spectral features from remote sensing images through multi-scale feature extraction technology, using image pyramids and convolutional neural networks.Then,an improved graph convolutional neural network (GCNN) is used to process these multi-scale features.By introducing a feature propagation mechanism and an adaptive weight adjustment strategy,the network's ability to learn local structures and global information is enhanced.Finally,semantic association analysis is used to fuse geological background knowledge with multi-scale physical features.The relationship between features is meas ured by cosine similarity and the weights are dynamically adjusted,achieving effective integration of physical features and se mantic information.Experimental results show that the proposed method achieves a peak signal-to-noise ratio (PSNR) of 35.2dB,reduces the spectral angle error (SAE) to 0.015,has a root mean square error (RMSE) of 0.012,and a structural similar ity index (SSIM) of 0.89.It effectively improves the spatial resolution of hyperspectral data while maintaining good spectral characteristics.This method provides a new idea for remote sensing monitoring of mining areas and has certain practical appli cation value.

Key words: multi-source remote sensing image,feature extraction,semantic association,image fusion,graph convolutional neural network

中图分类号: