欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (12): 265-274.

• 地质与测量 • 上一篇    下一篇

基于深度残差网络的InSAR干涉相位滤波方法

马合飞1 陈俊奇1 张 帝2 高延东2 李世金2 卞和方2 杨化超2   

  1. 1.河南能源义煤公司新义矿业有限公司,河南 洛阳 471821;2.中国矿业大学环境与测绘学院,江苏 徐州 221116
  • 出版日期:2025-12-15 发布日期:2025-12-31
  • 通讯作者: 高延东(1988—),男,副教授,博士,硕士研究生导师。
  • 作者简介:马合飞(1984—),男,高级工程师。
  • 基金资助:
    国家自然科学基金项目(编号:42404047)。

InSAR Interferometric Phase Filtering Method Based on Deep Residual Network

MA Hefei1 CHEN Junqi1 ZHANG Di2 GAO Yandong2 LI Shijin2 BIAN Hefang2 YANG Huachao2   

  1. 1.Henan Energy Yimei Company Xinyi Mining Co.,Ltd.,Luoyang 471821,China; 2.School of Environment Science and Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China
  • Online:2025-12-15 Published:2025-12-31

摘要: 干涉相位滤波是合成孔径雷达干涉(Interferometric Synthetic Aperture Radar,InSAR)测量数据处理的关 键步骤之一,其结果精度将直接影响相位解缠精度,进而影响最终InSAR的数据处理精度。近年来,深度学习InSAR 干涉相位滤波以其优越的性能得到广泛关注,但其模型仍然存在泛化能力弱、干涉相位细节保持能力差等瓶颈问题。 为此,提出了一种基于深度残差网络的InSAR干涉相位滤波方法,该方法在原有残差网络结构基础上,融入通道注意 力模块,加强深度学习干涉相位滤波网络模型的泛化能力,同时增强深度学习干涉相位滤波结果的细节信息。针对 干涉条纹边缘相位跳变问题,该网络模型以形变干涉相位的实部与虚部作为输入,从而有效保持密集条纹的边缘信 息;运用模拟数据与实测数据进行试验,并与已有的空间域、频率域以及深度学习滤波方法进行对比分析。试验结果 表明:在仿真数据中,所提出算法在均方根误差上提升近25%,结构相似性指数上提升近10%;在实测数据中,所提出 方法可以更好地保留相位细节信息。

关键词: 干涉相位滤波 深度学习 残差网络 通道注意力

Abstract: Interferometric phase filtering is one of the key steps in Interferometric Synthetic Aperture Radar (InSAR) measurement data processing.The accuracy of the results will directly affect the accuracy of phase un-wrapping,and then affect the final InSAR data processing accuracy.In recent years,deep learning InSAR inter-ferometric phase filtering has received ex tensive attention due to its superior performance,but its model still has bottlenecks such as weak generalization ability and poor ability to maintain interferometric phase details.Therefore,an InSAR interferometric phase filtering method based on deep re sidual network is proposed.Based on the original residual network structure,this method integrates the channel attention mod ule to enhance the generalization ability of the deep learning interferometric phase filtering network model and enhance the de tails of the deep learning interferometric phase filtering results.Aiming at the problem of edge phase jump of interference frin ges,the network model takes the real and imaginary parts of the deformed interference phase as input,so as to effectively main tain the edge information of dense fringes.The simulation data and the measured data are used for experiments,and compared with the existing spatial domain,frequency domain and deep learning filtering methods.The experimental results show that the proposed algorithm improves the root mean square error (RMSE) by nearly 25% and the structural similarity index (SSIM) by nearly 10% in the simulation data.In the measured data,the proposed method can better retain the phase detail information.

Key words: interferometric phase filtering,deep learning,residual network,channel attettion

中图分类号: