欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2012, Vol. 41 ›› Issue (04): 114-117.

• 地质与测量 • 上一篇    下一篇

用简化核主成分分析法实现高光谱遥感影像降维

曹茜1,2,谭琨1,2,杜培军1,2,夏俊士1   

  1. 1.中国矿业大学环境与测绘学院;2.江苏省资源环境信息工程重点实验室
  • 出版日期:2012-04-23 发布日期:2012-04-26
  • 基金资助:

    * 国家自然科学基金项目(编号:41101423),中央高校基本科研业务费专项资金项目(编号:2010QNA18),国土环境与灾害监测国家测绘局重点实验室开放基金项目(编号:LEDM2010B03, LEDM2011B05),地理空间信息工程国家测绘局重点实验室基金项目(编号:201011)。

Hyperspectral Remote Sensing Image Dimensionality Reduction by Kernel PCA Method Based on NystrÖm Algorithm

Cao Qian1,2,Tan Kun1,2,Du Peijun1,2,Xia Junshi1   

  1. 1.School of Environment and Mapping,China University of Mining and Technology(Xuzhou);2.Key Laboratory of Resources and Environmental Information Engineering, Jiangsu
  • Online:2012-04-23 Published:2012-04-26

摘要: 提出用基于Nystrm算法的简化核主成分分析方法(SKPCA)实现高光谱遥感影像的快速降维。首先随机选取部分样本构成子核矩阵并计算其特征向量,然后进行矩阵外推迭代得到近似核矩阵,并分解近似核矩阵不断更新特征向量,最后实现高光谱影像的降维处理。利用OMIS与ROSIS遥感影像进行试验,从运算速度、提取特征信息量以及分类后效果对SKPCA和KPCA(未简化的核主成分分析法)进行比较,结果表明,SKPCA和KPCA提取的特征信息量相当,提取特征与分类效果相近,但SKPCA的运算速度至少要高于KPCA数百倍。

关键词: 高光谱遥感影像, KPCA, NystrÖm算法, 降维, 分类

Abstract: The paper employed a novel method based on NystrÖm algorithm to realize dimensionality reduction of hyperspectral remote sensing image. First, part of the samples was extracted randomly to form sub kernel matrix whose eigenvectors were computed. Then the process above was iterated to compute the new kernel and update the eigenvectors. Finally the image after dimensionality reduction was produced with the last eigenvectors. This method was prepared with KPCA in time consumption, the quantity of extraction feature information and classification effect with datasets OMIS and ROSIS employed. Experimental results show that with contrast to KPCA, SKPCA (Simplified KPCA) had comparative performance in feature extraction and classification effects but apparently higher computing speed.

Key words: Hyperspectral image, KPCA, NystrÖm algorithm, Dimensionality reduction, Classification