欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2012, Vol. 41 ›› Issue (08): 138-141.

• 安全与环保 • 上一篇    下一篇

老采空区残余沉降的集合卡尔曼滤波预测

米丽倩1,2,3,查剑锋2,王新1   

  1. 1.中国矿业大学环境与测绘学院;2.国土环境与灾害监测国家测绘局重点实验室;3.江苏省资源环境信息工程重点实验室
  • 出版日期:2012-08-15 发布日期:2012-08-29
  • 基金资助:

    * 国家自然科学基金青年基金项目(编号:41104011)。

Ensemble Kalman Filter Prediction Model of Old Goaf Residual Subsidence

Mi Liqian1,2,3,Zha Jianfeng2,Wang Xin1   

  1. 1.School of Environment Science and Spatial Informatics, China University of Mining and Technology;2.Key Laboratory for Land Environment and Disaster Monitoring of SBSM;3.Jiangsu Key Laboratory of Resources and Environmental Information Engineering
  • Online:2012-08-15 Published:2012-08-29

摘要: 采用集合卡尔曼滤波方法,结合老采空区残余沉降的非确定性过程,视矿区变形为一个随机动态系统,研究并建立了老采空区残余沉降的集合卡尔曼滤波预测模型,并通过实例将集合卡尔曼滤波预测值和原始实测数据序列做对比分析。结果表明,集合卡尔曼滤波能够在减弱沉降数据中含有的随机噪声干扰的同时进行有效的数值计算,模型预测效果良好,为老采空区残余沉降预测提供了一种新方法。  

关键词: 老采空区, 残余沉降, 集合卡尔曼滤波, 预测

Abstract: With respect to the uncertainty process in goaf residual subsidence, the Ensemble Kalman Filter (EnKF) was introduced, the coal mine deformation was treated as a dynamic stochastic system and a new prediction model named Ensemble Kalman Filter model was proposed.Then the ensemble Kalman filter predicted value was compared with the original measured data.The numerical example shows that the ensemble Kalman filter model can effectively deal with the measured data polluted by noise.It proves that the prediction effect of Ensemble Kalman Filter is good, and Ensemble Kalman Filter offers a new way to predict the goaf residual subsidence.

Key words: Old goaf, Residual subsidence, Ensemble Kalman Filter (EnKF), Prediction