金属矿山 ›› 2015, Vol. 44 ›› Issue (12): 111-114.
罗亦泳1,2,张立亭2,周世健3,鲁铁定2
Luo Yiyong1,2,Zhang Liting2,Zhou Shijian3,Lu Tieding2
摘要: 为提高GPS高程异常拟合的精度及可靠性,基于相关向量机模型(Relevance vector machine,RVM),提出了一种稀疏化概率式的GPS高程异常SVM拟合模型。以柯西核函数与交叉验证法构建相关向量机,并推导了置信区间的估计公式。以某矿区GPS高程控制网为例,构建了基于相关向量机的高程异常拟合模型,并与多项式拟合、BP神经网络和遗传最小二乘支持向量机进行精度对比,通过置信区间估计,评价拟合结果的可靠性。试验结果表明:①相关向量机的平均绝对误差 (Mean absolute error,MAE)、平均绝对百分误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)等精度指标均较大幅度优于多项式、BP神经网络和遗传最小二乘支持向量机;②测试数据集的实测高程异常均在相关向量机估计的置信区间内。上述试验结果进一步表明:相关向量机是一种精度及可靠性高的矿区GPS高程异常拟合方法,对于快速测定矿区正常高有一定的参考价值。