欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2023, Vol. 52 ›› Issue (07): 219-225.

• 矿物工程 • 上一篇    下一篇

东北某低品位含银铅锌矿低碱分离试验研究

陈 雄1,2,3 何名飞1,2,3 卜 浩1,2,3 汤优优1,2,3 贾 敏1,2,3
  

  1. 1. 广东省科学院资源利用与稀土开发研究所,广东 广州 510650;2. 稀有金属分离与综合利用国家重点实验室,广东 广州 510650;3. 广东省矿产资源开发和综合利用重点实验室,广东 广州 510650
  • 出版日期:2023-07-15 发布日期:2023-09-05
  • 基金资助:
    广东省科学院 “ 千名博士 ( 后) 计划” 引进专项 ( 编号: 2020GDASYL-20200103104 ); 广东省科学院专项 ( 编号: 2022GDASZH-2022010104,2023GDASZH-2023010104)。

Experimental Study on Low-alkali Separation of a Low-grade Lead-zinc Ore Containing Silver in Northeast China

CHEN Xiong1,2,3 HE Mingfei1,2,3 BU Hao1,2,3 TANG Youyou1,2,3 JIA Min1,2,3 #br#   

  1. 1. Institute of Resource Utilization and Rare Earth Development,Guangdong Academy of Sciences,Guangzhou 510650,China;2. State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,Guangzhou 510650,China;3. Guangdong Province Key Laboratory of Mineral Resource and Comprehensive Utilization,Guangzhou 510650,China
  • Online:2023-07-15 Published:2023-09-05

摘要: 为高效开发利用东北某低品位含银铅锌矿,解决现场分选工艺中存在铅锌精矿铅锌互含较高,伴生金 属银回收率较低,且废水难于直接回用的难题,在工艺矿物学研究基础上,开展了铅锌低碱浮选试验研究,通过铅锌 浮选条件试验确定适宜的选矿工艺流程及药剂制度。 结果表明:针对含铅 1. 33%、锌 2. 51%、银 19. 5 g / t 的原矿,采用 铅锌优先浮选流程,在磨矿细度为-0. 074 mm 占 75. 42%情况下,以碳酸钠为 pH 调整剂、硫酸锌和亚硫酸钠为抑制 剂、苯胺黑药+丁铵黑药为捕收剂,经“ 1 粗 3 精 2 扫” 选铅,清水闭路试验,得到含铅 57. 52%、含锌 4. 84%、含银 585. 40 g / t、铅回收率 85. 38%、银回收率 57. 63%的铅精矿;选铅尾矿以硫酸铜为活化剂、石灰为抑制剂、苯胺黑药+丁 胺黑药为捕收剂,经“1 粗 2 精 2 扫”选锌,获得了含锌 51. 85%、含铅 1. 38%、含银 52. 20 g / t、锌回收率 90. 71%、银回收 率 11. 65%的锌精矿。 回水条件下铅锌指标与清水时各项指标相当。 试验通过在铅锌浮选中采用苯胺黑药+丁铵黑 药做铅锌矿物捕收剂,使常规抑制剂能够代替石灰或减少石灰用量,从而实现硫化铅锌矿的低碱度分选,并使矿石中 伴生银富集在铅精矿中综合回收;且回水可以重新应用于生产流程。

关键词: 铅锌硫化矿, 低碱浮选, 优先浮选, 黑药捕收剂, 组合抑制剂, 回水回用

Abstract: In order to efficiently develop and utilize a low-grade silver-bearing lead-zinc mine in Northeast China,and solve the problems of high lead-zinc concentration,low recovery rate of associated metal silver,and difficulty in direct reuse of wastewater in the on-site separation process,a new low alkaline flotation process was studied on the basis of process mineralogy research,and the appropriate beneficiation flowsheet and reagent system were determined through the lead -zinc flotation condition tests. The results showed that for the raw ore containing lead of 1. 33%,zinc of 2. 51%,and silver of 19. 5 g / t,the leadzinc preferential flotation process was adopted. Under the condition that the grinding fineness of - 0. 074 mm accounted for 75. 42%,sodium carbonate was used as a pH regulator,zinc sulfate and sodium sulfite were used as inhibitors,and aniline+ammonium butyrate black powder was used as a collector. After one roughing,three cleaning and two scavenging lead flotation,the lead concentrate containing lead of 57. 52%,zinc of 4. 84% and silver of 585. 40 g / t were obtained with lead recovery rate of 85. 38% through clear water closed-circuit test,while the recovery of silver in lead concentrate is 57. 63%. The lead tailings were treated with copper sulfate as an activator,lime as an inhibitor,and aniline+butylamine black powder as a collector. The zinc concentrate containing zinc of 51. 85%,lead of 1. 38%,silver of 52. 20 g / t,zinc recovery rate of 90. 71%,and silver recovery rate of 11. 65% was obtained by one roughing,two cleaning and two scavenging zinc flotation. The indexes of lead and zinc using return water were similar to those in clear water. The application of aniline+butylammonium black powder as the lead-zinc flotation collector enabled conventional inhibitors to replace lime or reduce the dosage of lime,thereby achieving the low alkaline lead-zinc separation and enabling the silver enrichment in lead concentrate,and the return water can be reapplied to the production process.

Key words: lead-zinc sulfide ores,low alkaline flotation,preferential flotation,aerofloat collector,combined inhibitor,return water recycling