欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (12): 175-182.

• 机电与自动化 • 上一篇    下一篇

声发射信号与SGE-DCNN自特征融合的滚动轴承故障诊断方法

林阳辉1 陈孝鑫2 周子豪2 古莹奎2   

  1. 1.福建马坑矿业股份有限公司,福建 龙岩 364000;2.江西理工大学机电工程学院,江西 赣州 341000
  • 出版日期:2025-12-15 发布日期:2025-12-31
  • 作者简介:林阳辉(1990—),男,高级工程师,硕士。
  • 基金资助:
    江西省自然科学基金重点项目(编号:20212ACB202004);江西省省级研究生创新基金项目(编号:YC2024-S558)。

Rolling Bearing Fault Diagnosis Method Based on Acoustic Emission Signals and SGE-DCNN Self-Feature Fusion

LIN Yanghui1 CHEN Xiaoxin2 ZHOU Zihao2 GU Yingkui2   

  1. 1.Fujian Makeng Mining Co.,Ltd.,Longyan 364000,China; 2.School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China
  • Online:2025-12-15 Published:2025-12-31

摘要: 在低速、重载等低频状态监测工况下,传统的振动信号由于能量微弱、易受机械共振及背景噪声干扰, 难以有效捕捉早期的微损伤特征。针对现有智能诊断模型结构复杂、参数量大、计算成本高等问题,提出了一种基于 声发射信号与空间分组增强—深度卷积神经网络(Spatial Group-wise Enhance - Deep Convolutional Neural Network, SGE-DCNN)的自特征融合故障诊断模型。利用格拉姆角场(Gramian Angular Field,GAF)将一维非平稳声发射信号转 换为二维角度关系图像,将时序信号的动态特征与全局相关性编码为高维视觉模式,为后续深度特征提取构建了富 含故障信息的图像数据集;再在深度卷积神经网络(DCNN)中引入轻量化的空间分组增强(SGE)注意力模块,通过分 组增强机制在空间与通道双维度上自适应地强化关键故障特征,并抑制无关噪声干扰,实现了无需人工干预的深层 特征自动提取与融合。试验结果表明:① 所提方法在包含外圈点蚀、内圈裂纹等多种故障模式的测试集上,平均识别 准确率达到了96.54%;在强噪声环境下(信噪比低至2.5 dB),模型仍能保持较高的识别精度,展现出较强的鲁棒性。 ② 由于SGE模块的轻量化设计,模型在保持高精度的同时,其训练耗时与基准DCNN模型相当,证明了其在诊断精度 与计算效率间的良好平衡。所提方法为解决轴承早期故障诊断中信号提取难与模型部署难的问题,提供了一种行之 有效的技术途径。

关键词: 滚动轴承 故障诊断 格拉姆角场 声发射 深度卷积神经网络

Abstract: Under low frequency monitoring conditions such as low speed and heavy load,traditional vibration signals are difficult to effectively capture early micro damage characteristics due to their weak energy,susceptibility to mechanical reso nance and background noise interference.A self feature fusion fault diagnosis model based on acoustic emission signals and Spatial Group wise Enhancement Deep Convolutional Neural Network (SGE-DCNN) is proposed to address the problems of complex structure,large parameter quantity,and high computational cost in existing intelligent diagnostic models.Using the Gram Angular Field (GAF),one-dimensional non-stationary acoustic emission signals were converted into two-dimensional an gular relationship images.The dynamic features and global correlations of the temporal signals were encoded into high-dimen sional visual patterns,which constructed an image dataset rich in fault information for subsequent deep feature extraction.Fur thermore,a lightweight Spatial Grouping Enhancement (SGE) attention module is introduced into the Deep Convolutional Neu ral Network (DCNN) to adaptively enhance key fault features in both spatial and channel dimensions through grouping en hancement mechanism,while suppressing irrelevant noise interference,achieving automatic extraction and fusion of deep fea tures without manual intervention.The experimental results show that:① The proposed method achieves an average recognition accuracy of 96.54% on a test set containing multiple fault modes such as outer ring pitting and inner ring cracking.In strong noise environments (with signal-to-noise ratios as low as 2.5 dB),the model can still maintain high recognition accuracy and demonstrate strong robustness.② Due to the lightweight design of the SGE module,the model maintains high accuracy while its training time is comparable to the benchmark DCNN model,demonstrating a good balance between diagnostic accuracy and computational efficiency.The proposed method provides an effective technical approach to solve the problems of difficult signal extraction and model deployment in early bearing fault diagnosis.

Key words: rolling bearing,fault diagnosis,Gramian angular field,acoustic emission,deep convolutional neural network

中图分类号: