欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (7): 124-136.

• 机电与自动化 • 上一篇    下一篇

基于 AI 识别模型的智慧矿山井上 / 下安全预警系统 构建及应用 

杨  洋1   马  昆1,2   王立兵3,4   任予鑫1,5   黄艳利6   董霁红3   

  1. 1. 国家能源集团宁夏煤业有限责任公司,宁夏 银川 750000;2. 中国矿业大学机电工程学院,江苏 徐州 221116; 3. 中国矿业大学环境与测绘学院,江苏 徐州 221116;4. 矿山生态修复教育部工程研究中心,江苏 徐州 221116; 5. 中国矿业大学公共管理学院(应急管理学院),江苏 徐州 221116;6. 中国矿业大学矿业工程学院,江苏 徐州 221116
  • 出版日期:2025-07-15 发布日期:2025-08-12
  • 通讯作者: 董霁红(1967—),女,教授,博士,博士研究生导师。
  • 作者简介:杨  洋(1989—),男,工程师。
  • 基金资助:
    国家能源集团宁夏煤业有限责任公司企业项目(编号:[2023]016);“十三五”国家重点研发计划项目(编号:2017YFE0119600)。 

Construction and Application of an Intelligent Mine Safety Early Warning System for Surface and Underground Operations Based on AI Recognition Model

YANG Yang 1   MA Kun 1,2   WANG Libing 3,4   REN Yuxin 1,5   HUANG Yanli 6   DONG Jihong 3   

  1. 1. Ningxia Coal Industry Co. ,Ltd. of CHN ENERGY,Yinchuan 750000,China; 2. School of Mechanical and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116,China; 3. School of Environment and Spatial Informatics,China University of Mining and Technology,Xuzhou 221116,China; 4. Engineering Research Center of Mine Ecological Restoration,Ministry of Education,Xuzhou 221116,China; 5. School of Public Policy & Management (School of Emergency Management),China University of Mining and Technology, Xuzhou 221116,China;6. School of Mines,China University of Mining and Technology,Xuzhou 221116,China
  • Online:2025-07-15 Published:2025-08-12

摘要: 针对智慧矿山建设中煤矿安全生产面临的复杂挑战,构建了一套面向全流程、多场景的人工智能安全 预警系统,通过“感知—分析—预警—处置”的闭环架构,实现矿山安全生产的智能化管控。 在感知层,设计了基于深 度学习模型的矿山场景智能感知方案,实现对复杂矿山环境的精准识别;在分析层,开发了采—掘—运—通协同预警 模型,实现生产环节的全面监控;在决策层,集成机器学习算法与知识图谱技术,构建了具有跨域适应性的混合智能 预警系统;在应用层,搭建多维感知预警平台,包括综采工作面智能可视化、矿井水动态监测、井下人员行为智能研判 等功能模块,实现了对矿山生产全过程的实时、精准监控。 研究表明:① 融合 DETR 和 DeepLabV3+的矿山场景识别 AI 模型在高分辨率数据集上的 PA 值达到 0. 835、MIOU 值达到 0. 825,结合 SAM 模型对露天煤炭场地、井工煤炭场地、 煤电场地和煤化工场地 4 类煤基场地的识别精度均超过 0. 820,在鄂尔多斯和宁东基地的验证中识别精度分别达到 0. 788 和 0. 838;② 矿山安全预警系统采用分层设计架构,可以完成从矿山开采数据采集、处理到业务逻辑和应用展 示的全过程智能感知管控;③ 系统在宁东基地典型矿山的应用验证表明,该系统具有良好的实用性和可靠性,为推动 传统矿山向智慧矿山转型提供了实践范例。 

关键词: 智慧矿山  安全预警  深度学习  协同预警模型  多场景感知 

Abstract: In response to the complex challenges faced by coal mine safety production in the construction of smart mines, a set of artificial intelligence safety early warning systems for the entire process and multiple scenarios has been established. Through a closed-loop architecture of " perception-analysis-early warning-disposal" ,intelligent control of mine safety production is achieved. In the perception layer,an intelligent perception scheme for mine scenes based on deep learning models is designed to accurately identify complex mine environments. In the analysis layer,a collaborative early warning model for mining, digging transportation,and ventilation is developed to achieve comprehensive monitoring of production links. In the decisionmaking layer,machine learning algorithms and knowledge graph technologies are integrated to build a hybrid intelligent early warning system with cross-domain adaptability. In the application layer,a multi-dimensional perception early warning platform is built,including intelligent visualization of fully mechanized mining faces,dynamic monitoring of mine water and intelligent analysis of underground personnel behavior,achieving real-time and precise monitoring of the entire production process of the mine. Research shows that:① The AI model for mine scene recognition,which integrates DETR and DeepLabV3+,achieves a PA value of 0. 835 and an MIOU value of 0. 825 on high-resolution datasets. Combined with the SAM model,the recognition accuracy for four types of coal-based sites,including open-pit coal yards,underground coal yards,coal power sites and coal chemical sites,all exceed 0. 820. The verification in the Ordos and Ningdong bases achieved recognition rates of 0. 788 and 0. 838, respectively. ② The mine safety early warning system adopts a hierarchical design architecture,which can complete the entire process of intelligent perception and control from data collection and processing in mine production to business logic and application display. ③ The application verification of the system in a typical mine in the Ningdong base shows that the system has good practicability and reliability,providing a practical example for promoting the transformation of traditional mines to smart mines. 

Key words: smart mine,safety warning,deep learning,collaborative warning model,multi-scenario perception 

中图分类号: