欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 54 ›› Issue (7): 160-165.

• 机电与自动化 • 上一篇    下一篇

基于改进生成对抗网络的矿山三维虚拟场景建模 

周超逸1   贾美玲2   屈  波1   黄  臻2    

  1. 1. 国能神东煤炭智能技术中心,陕西 西安 719315;2. 陕西亿杰鑫信息技术有限公司,陕西 西安 710065
  • 出版日期:2025-07-15 发布日期:2025-08-12
  • 通讯作者: 贾美玲(1996—),女,工程师,硕士。
  • 作者简介:周超逸(1996—),男,工程师。
  • 基金资助:
    中国神华能源股份有限公司神东煤炭分公司科技创新项目(编号:E210100270)。

Mine 3D Virtual Scene Modeling Based on Improved Generative Adversarial Network 

ZHOU Chaoyi 1   JIA Meiling 2   QU Bo 1   HUANG Zhen 2    

  1. 1. Guoneng Shendong Coal Intelligent Technology Center,Xi′an 719315,China; 2. Shaanxi Yijiexin Information Technology Co. ,Ltd. ,Xi′an 710065,Chin
  • Online:2025-07-15 Published:2025-08-12

摘要: 随着虚拟现实技术的快速发展,矿山三维虚拟场景建模在矿山安全管理、培训以及灾害预防等领域展 现出广泛的应用前景。 然而,传统的三维建模方法通常依赖于人工操作,耗时多且精度有限。 为此,提出了一种基于 改进生成对抗网络的矿山三维虚拟场景建模方法。 首先,利用三维激光扫描技术获取矿山实际地形数据,构建高精 度的点云模型。 然后,通过预处理和特征提取,设计条件生成对抗网络以提高生成模型的稳定性和逼真度,将点云数 据输入改进的生成对抗网络中。 生成网络通过学习点云数据的空间分布特征,生成逼真的矿井三维虚拟场景;判别 网络则用于评估生成场景的真实性并指导生成网络的优化。 试验结果表明:改进的生成对抗网络方法在细节保留度 上达到了 95. 8%,生成一个三维模型仅需 15 s,在细节保留、真实性和建模效率方面均优于传统方法,为矿山三维虚拟 场景建模提供了有力支持。 

关键词: 矿井三维建模  三维激光扫描  虚拟现实  生成对抗网络

Abstract: With the rapid development of virtual reality technology,the modeling of three-dimensional virtual scenes in mines has shown broad application prospects in areas such as mine safety management,training,and disaster prevention. However,traditional three-dimensional modeling methods usually rely on manual operations,which are time-consuming and have limited accuracy. Therefore,a method for modeling three-dimensional virtual scenes in mines based on an improved generative adversarial network is proposed. Firstly,three-dimensional laser scanning technology is used to obtain the actual terrain data of the mine and construct a high-precision point cloud model. Then,through preprocessing and feature extraction,a conditional generative adversarial network is designed to improve the stability and realism of the generated model. The point cloud data is input into the improved generative adversarial network. The generative network generates realistic three-dimensional virtual scenes of the mine by learning the spatial distribution features of the point cloud data;the discriminative network is used to evaluate the authenticity of the generated scenes and guide the optimization of the generative network. The experimental results show that the improved generative adversarial network method achieves a detail retention rate of 95. 8%,and it only takes 15 s to generate a three-dimensional model. It is superior to traditional methods in terms of detail retention,authenticity,and modeling efficiency,providing strong support for the modeling of three-dimensional virtual scenes in mines.

Key words: mine 3D modeling,3D laser scanning,virtual reality,generative adversarial network 

中图分类号: