欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2024, Vol. 53 ›› Issue (01): 139-148.

• “智能矿山建设与实践”专题 • 上一篇    下一篇

基于前馈补偿LQR与PID的矿井无轨胶轮车横纵向控制研究

江 松1,2,3 武露云1 付信凯4 顾清华1 洪 勇1 章 赛1 卢才武1
  

  1. 1. 西安建筑科技大学资源工程学院,陕西 西安 710055;2. 中钢集团马鞍山矿山研究总院股份有限公司,安徽 马鞍山 243000;3. 金属矿山安全与健康国家重点实验室,安徽 马鞍山 243000;4. 中钢集团山东富全矿业有限公司,山东 济宁 272000
  • 出版日期:2024-01-15 发布日期:2024-04-21
  • 基金资助:
    国家自然科学基金项目(编号:52104146);陕西省教育厅服务地方专项重点培育项目(编号:21JC024);中国博士后科学基金项目(编号:2022M722925)。

Research on Lateral and Longitudinal Control of Mine Trackless Rubber-tyred Vehicle Based on Feedforward Compensation LQR and PID

JIANG Song1,2,3 WU Luyun1 FU Xinkai4 GU Qinghua1 HONG Yong1 ZHANG Sai1 LU Caiwu1 #br#   

  1. 1. School of Resource Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China;2. Sinosteel Maanshan General Institute of Mining Research Co. ,Ltd. ,Maanshan 243000,China;3. State Key Laboratory of Metal Mine Safety and Health,Maanshan 243000,China;4. Sinosteel Fuquan Mining Co. ,Ltd. ,Jining 272000,China
  • Online:2024-01-15 Published:2024-04-21

摘要: 无人驾驶技术是实现无轨胶轮车井下安全、智能、高效运输的重要方案之一,为了提高无人驾驶过程中 的轨迹跟踪精度,提出了基于前馈补偿的横向线性二次型调节器(Linear Quadratic Regulator,LQR)与纵向比例积分微 分(Proportion Integration Derivative,PID)位移速度调节器相结合的控制策略,实现车辆的横纵向协调控制。 通过建立 考虑轮胎侧偏特性的 2 自由度无轨胶轮车动力学模型和跟踪误差模型,并采用井下无轨胶轮车实车参数建立其电机 模型,得到车辆的驱动制动输出。 利用 Carsim 和 Matlab / Simulink 搭建联合仿真环境,分别在井下双车道工况、单车道 工况与颠簸路面工况下进行了轨迹跟踪仿真验证。 结果表明:在 3 种工况下车辆轨迹跟踪过程中的最大横向误差仅 为 5 cm,最大纵向误差仅为 10 cm,速度误差控制在 1 m / s 以内,航向误差范围为±0. 1 rad,前轮偏转角变化平稳未出 现抖动现象。 为验证控制器在井下实际环境下的跟踪性能,使用实验室小车于陕西某井下巷道进行了现场试验验 证,结果表明:井下实际巷道下试验结果误差仍在合理范围内,解决了车辆运行过程中的速度和路径的时变问题,反 映出该控制器具有较高的精度和较好的稳定性。

关键词: 无轨胶轮车, LQR, PID, 前馈补偿, 电机模型, 横纵向协调控制, 智能矿山

Abstract: Unmanned driving technology is one of the important schemes to realize the safe,intelligent and efficient transportation of trackless rubber-tyred vehicles. In order to improve the accuracy of trajectory tracking in the process of unmanned driving,a control strategy based on feedforward compensation is proposed,which combines the lateral linear quadratic optimal controller (LQR) with the longitudinal proportional integral differential (PID) displacement speed regulator to realize the lateral and longitudinal coordinated control of the vehicle. By establishing a two-degree-of-freedom trackless rubber-tyred vehicle dynamics model and tracking error model considering tire cornering characteristics,and using the actual vehicle parameters of the underground trackless rubber-tyred vehicle to establish its motor model to obtain the driving and braking output of the vehicle. Carsim and Matlab / Simulink are used to build a joint simulation environment,and trajectory tracking simulation verification is carried out under underground two-lane conditions,single-lane conditions and bumpy road conditions. The simulation results show that the maximum lateral error in the process of vehicle trajectory tracking under three working conditions is only 5 cm,the maximum longitudinal error is only 10 cm,the speed error is controlled within 1 m / s,the heading error range is ±0. 1 rad,and the front wheel deflection angle changes smoothly without jitter. At the same time,in order to verify the tracking performance of the controller in the actual underground environment,a laboratory car was used to conduct field experiments in a underground roadway in Shaanxi. The experimental results show that the error of the experimental results under the actual roadway is still within a reasonable range,the problem of time-varying speed and path during vehicle operation is solved,which reflects that the controller has high precision and good stability.

Key words: trackless rubber-tyred vehicle,LQR,PID,feedforward compensation,motor model,lateral-longitudinal coordinated control,intelligent mine