欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2010, Vol. 39 ›› Issue (06): 139-141+166.

• 机电与自动化 • 上一篇    下一篇

数字遥感图像解译分类方法研究

孟海东, 姚继营   

  1. 内蒙古科技大学
  • 出版日期:2010-06-15 发布日期:2010-11-09
  • 基金资助:

    国家自然科学基金项目(编号:40762003),内蒙古自然科学基金项目(编号:200711020814)。

Interpretation and Classification Research of the Digital Remote Sensing Image

Meng Haidong,Yao Jiying   

  1. Inner Mongolia University of Science and Technology
  • Online:2010-06-15 Published:2010-11-09

摘要: 遥感技术的发展,使人类能够获得非常丰富的知识,扩大人们观察大自然的视野。但面临的问题是如何处理大量的数据,使之成为有用的信息。随着卫星遥感数据获取方法的飞跃发展,传统的遥感图像分类方法不但导致分类精度降低,而且会造成空间数据大量冗余浪费资源。因此,提出了一种利用基于密度和自适应密度可达聚类算法(CADD)的数字遥感图像分类方法。理论分析和实验结果证明这种方法能够有效地对遥感图像进行分类。

关键词: 数字遥感图像, 增量聚类, 分类

Abstract: The development of the remote sensing technology makes very abundant information obtained,which extends the visual field of the nature for people.But the challenge that faces us is how to make use of the data effectively and obtain more useful information through some processing.With the rapid development of data capture method of remote sensing,the traditional classification method result in not only reducing the classification accuracy but also making the spatial data redundant and wasting the resource.So,a new digital remote imagine classification method based on Clustering Algorithm with Density and adaptive Density-reachable(CADD) is proposed.Theoretic analysis and experimental results indicated that this method is effective to make classification of remote sensing image.

Key words: Digital remote sensing image, Increment clustering, Classification