欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2024, Vol. 53 ›› Issue (01): 165-173.

• “智能矿山建设与实践”专题 • 上一篇    下一篇

基于加权多矩融合特征的矿物影像智能识别算法研究

汪金花1,2 刘 巍1 李孟倩1 戴佳乐1 韩秀丽1
  

  1. 1. 华北理工大学矿业工程学院,河北 唐山 063210;2. 河北省矿业工程开发与安全技术重点实验室,河北 唐山 063210
  • 出版日期:2024-01-15 发布日期:2024-04-21
  • 基金资助:
    国家自然科学基金面上项目(编号:51774140);河北省自然科学基金项目(编号:E2021209147);河北省高等学校科学技术研究重点项目(编号:ZD2021082);科技基础研究项目(编号:JQN2020037)。

Study on Intelligent Recognition Algorithm of Mineral Image Based on Weighted Multi-moment Fusion Feature

WANG Jinhua1,2 LIU Wei1 LI Mengqian1 DAI Jiale1 HAN Xiuli1 #br#   

  1. 1. School of Mining Engineering,North China University of Science and Technology,Tangshan 063210,China;2. Hebei Province Key Laboratory of Mining Development and Security Technology,Tangshan 063210,China
  • Online:2024-01-15 Published:2024-04-21

摘要: 随着数字识别技术在镜下影像分析的广泛应用,镜下物质类型的智能识别成为了一个微观分析的基础 问题。 镜下影像自动识别不仅能有效节约人工成本,还能提高识别效率。 针对镜下矿物智能识别精度低的问题,以镜 下影像的颜色矩、纹理矩以及形态 RSTC 矩 3 类指标为识别特征,以指标熵权和变异系数权为识别初始权,构建了一 种多矩融合机器学习智能识别模型。 选取磁铁矿、云母、方解石、黄铜等的影像集为第一类样本,以烧结矿中的玻璃 相、铁酸钙等影像作为第二类样本,提取样本颜色矩、纹理矩和形状 RSTC 矩的特征,量化分析了特征在影像识别中的 贡献率,开展了多矩融合机器学习智能识别试验。 结果表明:不同类型特征指标对影像识别过程贡献率有明显差异, 多矩融合机器学习智能识别模型具有较好的识别率和鲁棒性,能够明显提高影像识别精度,指标熵权和变异系数权 为初始权能够明显促进算法快速收敛,减少识别时间,该研究为矿石镜下影像识别提供了新的方法。

关键词: 矿物影像, 多矩融合特征, 智能识别, 综合定权

Abstract: With the wide application of digital recognition technology in image analysis under the microscope,the intelligent recognition of substance type under the microscope has become a basic problem of microscopic analysis. Aiming at the problem of low precision of mineral intelligent recognition in image,a multi matrix fusion machine learning intelligent recognition model was constructed by taking color matrix,texture matrix and RSTC moment invariant as recognition characteristics and entropy weight and coefficient of variation weight as initial recognition weights. In this paper,the image sets of magnetite,mica, calcite,brass and calcium ferrite were selected as test samples,and the characteristics of color matrix,texture matrix and RSTC moment invariant were extracted. The contribution rate of features in image recognition was quantitatively analyzed,and the intelligent recognition experiment of multi-matrix fusion machine learning was carried out. Test results show that the contribution rates of different types of feature indexes in the process of image recognition are significantly different,the machine learning intelligent recognition model based on multi matrix fusion has good recognition rate and robustness,and can significantly improve image recognition accuracy. Index entropy weight and variation coefficient class weight as initial weight can obviously promote the rapid convergence of the algorithm and reduce the recognition time.

Key words: mineral image,multi-moment fusion feature,intelligent identification,comprehensive weighting