欢迎访问《金属矿山》杂志官方网站,今天是 分享到:
×

扫码分享

金属矿山 ›› 2025, Vol. 55 ›› Issue (8): 158-164.

• 机电与自动化 • 上一篇    下一篇

基于 SoftEdge 软边缘检测模型与改进分水岭的浮选 泡沫图像分割方法研究 

卢才武1,2   曹  越1,2   刘  迪1,2   江  松1,2   李冠东3,4   张泽家1,2   赵旭阳5   

  1. 1. 西安建筑科技大学资源工程学院,陕西 西安 710055;2. 西安市智慧工业感知、计算与决策重点实验室,陕西 西安 710055; 3. 中国恩菲工程技术有限公司,北京 100000;4. 昆明理工大学国土资源工程学院,云南 昆明 650005; 5. 栾川龙宇钼业有限公司,河南 栾川 471500
  • 出版日期:2025-09-15 发布日期:2025-09-16
  • 通讯作者: 刘  迪(1987—),女,讲师,博士,硕士研究生导师。
  • 作者简介:卢才武(1965—),男,教授,博士,博士研究生导师。
  • 基金资助:
    国家自然科学基金项目(编号:52404140);陕西省自然科学基金项目(编号:S2023-JC-QN-0687);陕西省社会科学基金项目(编号: 2023R035)。 

Research on Flotation Foam Image Segmentation Method Based on SoftEdge Soft Edge Detection Model and Improved Watershed Algorithm 

LU Caiwu 1,2   CAO Yue 1,2   LIU Di 1,2   JIANG Song 1,2   LI Guandong 3,4   ZHANG Zejia 1,2   ZHAO Xuyang 5    

  1. 1. School of Resource Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China; 2. Xi′an Key Laboratory of Intelligent Industrial Perception,Computing,and Decision-Making,Xi′an 710055,China; 3. China ENFI Engineering Corporation,Beijing 100000,China; 4. School of Land and Resources Engineering,Kunming University of Science and Technology,Kunming 650005,China; 5. Luanchuan Longyu Molybdenum Industry Co. ,Ltd. ,Luanchuan 471500,China
  • Online:2025-09-15 Published:2025-09-16

摘要: 针对浮选泡沫图像分割中传统分水岭算法的分割误差问题,研究结合 SoftEdge 模型与改进的分水岭算 法,首先对泡沫图像进行高斯低通滤波降噪,再利用 SoftEdge 模型提取软边缘,从而削弱光噪声对边缘检测的干扰,进 而采用基于前置背景标记技术优化的分水岭算法,通过精确提取前景与背景标记,指导分水岭算法在限定区域内执 行分割,显著减少了分割误差现象。 研究结果表明,该方法规避了对先验知识和复杂参数的依赖,并大幅提升了分割 精度。 

关键词: 浮选泡沫图像分割  SoftEdge 模型  改进分水岭算法  前景背景标记技术 

Abstract: In order to address the segmentation errors of the traditional watershed algorithm in flotation foam image segmentation,this study integrates the SoftEdge model with an improved watershed algorithm. First,Gaussian low-pass filtering is applied to denoise the foam images. Then,the SoftEdge model is used to extract soft edges,thereby reducing the interference of light noise in edge detection. Subsequently,a watershed algorithm optimized with foreground-background markers is adopted. By accurately extracting these markers,the algorithm performs segmentation only within predefined regions,which significantly reduces segmentation errors. The results demonstrate that this method avoids reliance on prior knowledge and complex parameter settings,while substantially improving segmentation accuracy. 

Key words: image segmentation of flotation froth,SoftEdge model,improved watershed algorithm,foreground and background marking techniques 

中图分类号: